skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1846354

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  2. A search for proton decay into e + / μ + and a η meson has been performed using data from a 0.373 Mton · year exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear η interaction cross section, resulting in a factor of 2 reduction in uncertainties from this source and 10 % increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of 1.4 × 10 34 years for p e + η and 7.3 × 10 33 years for p μ + η at the 90% CL were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. Published by the American Physical Society2024 
    more » « less
  3. We present the results of the charge ratio ( R ) and polarization ( P 0 μ ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R = 1.32 ± 0.02 ( stat + syst ) at E μ cos θ Zenith = 0.7 0.2 + 0.3 TeV , where E μ is the muon energy and θ Zenith is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the π K model of 1.9 σ . We also measured the muon polarization at the production location to be P 0 μ = 0.52 ± 0.02 ( stat + syst ) at the muon momentum of 0.9 0.1 + 0.6 TeV / c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5 σ . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV / c . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024 
    more » « less
  4. Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  5. Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses 13 7 18 + 23 M and 10 1 50 + 22 M (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of 0.4 0 0.25 + 0.27 , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— 0.9 0 0.19 + 0.10 and 0.8 0 0.52 + 0.20 , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130Mshould be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200Mform through gravitational-wave-driven mergers. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  6. Abstract Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15Mstar within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance. 
    more » « less
  7. The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses m 1 = 33.6 0.8 + 1.2 M and m 2 = 32.2 1.3 + 0.8 M , and small spins χ 1 , 2 0.26 (90% credibility) and negligible eccentricity e 0.03 . Postmerger data excluding the peak region are consistent with the dominant quadrupolar ( = | m | = 2 ) mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to ± 30 % of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  8. The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of 19.7 ( 16.3 ) × 10 20 protons on target in (anti)neutrino mode, the analysis finds a 1.9 σ exclusion of C P conservation (defined as J C P = 0 ) and a 1.2 σ exclusion of the inverted mass ordering. Published by the American Physical Society2025 
    more » « less
  9. Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4Mc2and luminosity 2.6 × 10−4Mc2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  10. Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026